Werde Teil des Teams von NIKE, Inc. Team

NIKE, Inc. stattet nicht nur die besten Athleten der Welt aus. Wir erkunden neue Möglichkeiten, finden Wege und überwinden die Grenzen des Machbaren. Unser Unternehmen sucht nach Menschen, die wachsen, denken, träumen und gestalten möchten. Unsere Unternehmenskultur schätzt Vielfalt und belohnt Einfallsreichtum. Unsere Marke sucht Menschen, die ihre Ziele erreichen, Führungsfähigkeiten haben und den Blick in die Zukunft richten. Bei NIKE, Inc. bringen alle Mitarbeiterinnen und Mitarbeiter ihre Fähigkeiten ein und nehmen immer neue Herausforderungen mit Leidenschaft an.

Job Summary 

We are seeking a highly skilled and motivated Lead Data Engineer to join our data engineering team in Nike’s Consumer Product and Innovation (CP&I) organization. In this role, you will be responsible for designing, building, and maintaining scalable data pipelines and analytics solutions. As a Lead Data Engineer, you will play a key role in ensuring that our data products are robust and capable of supporting our Advanced Analytics and Business Intelligence initiatives. You will be reporting to the Engineering Director and be part of a team that will be a driving force in building a cross-capability data foundation, defining and implementing data products to deliver data and AI solutions that drive business growth for Nike. 

 

Key Responsibilities 

  • Lead the design, development, and deployment of scalable data pipelines and architectures. 

  • Collaborate with data scientists, engineers, analysts, product managers and business stakeholders to understand data requirements, translate them into technical specifications and deliver data solutions that drive decision-making. 

  • Mentor and provide technical guidance to junior data engineers, fostering a culture of collaboration, innovation, and continuous improvement. 

  • Develop and enforce best practices for data engineering, including coding standards, data governance, and performance optimization. 

  • Communicate complex technical concepts to non-technical stakeholders, ensuring alignment and understanding across teams. 

  • Participate in code reviews, provide feedback, and contribute to continuous improvement of the team's coding practices. 

  • Design, build, and maintain robust ETL/ELT pipelines, reusable components, frameworks, and libraries to process data from a variety of data sources ensuring data quality and consistency. 

  • Monitor and troubleshoot data pipelines, ensuring high availability and performance. 

  • Implement CI/CD pipelines to automate deployment and testing of data engineering workflows. 

 

Required Qualifications

Technical Expertise: 

  • Proven experience (5+ years) as a Data Engineer, with a focus on Databricks, PySpark, and SQL. 
  • Strong expertise in Apache Spark and distributed computing frameworks, with hands-on experience optimizing Spark jobs for performance and scalability. 

  • Proficiency in SQL, with the ability to write complex queries and perform data transformations. 

  • Experience with Databricks Lakehouse Platform, Medallion architecture and Delta Lake. 

  • Experience working with AWS including data services such as S3 and RDS. 

  • Experience with data modeling, ETL/ELT processes, and data warehousing concepts. 

  • Experience with CI/CD pipelines, version control (Git), and DevOps practices in a data engineering context. 

Leadership & Collaboration:

  • Strong leadership skills with a proven ability to lead and mentor data engineering teams. 
  • Excellent problem-solving skills and the ability to design solutions for complex data challenges. 

  • Effective communication and collaboration skills, with the ability to work cross-functionally and translate technical concepts for non-technical stakeholders. 

 Education:

  •  Bachelor Degree or a combination of relevant education, training and experience

 

Preferred Qualifications: 

  • Familiarity with real-time data processing frameworks such as Apache Kafka, Kinesis, or similar. 

  • Knowledge of Generative AI and Machine Learning pipelines and integrating them into production environments. 

  • Certification in Databricks (e.g., Databricks Certified Data Engineer, Databricks Certified Developer for Apache Spark). 

 

We are committed to fostering a diverse and inclusive environment for all employees and job applicants. We offer a number of accommodations to complete our interview process including screen readers, sign language interpreters, accessible and single location for in-person interviews, closed captioning, and other reasonable modifications as needed. If you discover, as you navigate our application process, that you need assistance or an accommodation due to a disability, please complete the Candidate Accommodation Request Form.

Was dich erwartet

UNSER REKRUTIERUNGSPLAN

01 Bewerben

Unsere Teams leben von einer Vielfalt an Kompetenzen, Fähigkeiten, Denkweisen, Ideen und Erfahrungen. Wir möchten, dass du die für dich richtige Stelle findest. Sieh dir Stellenbeschreibungen, Abteilungen und Teams an und finde heraus, welche Rolle zu dir passt.

02 Recruiter:in treffen oder an Beurteilung teilnehmen

Wenn du für eine Stelle im Unternehmen ausgewählt wirst, setzt sich ein:e Recruiter:in mit dir in Verbindung, um das Vorstellungsgespräch einzuleiten und dir während des gesamten Prozesses als Hauptansprechpartner:in zur Seite zu stehen. Bei Stellen im Retail-Bereich nimmst du an einer interaktiven Beurteilung teil, die ein Gespräch und Quizfragen umfasst und etwa 10 bis 20 Minuten dauert. Egal, welche Rolle du anstrebst, wir möchten dich als ganze Person kennenlernen. Zögere also nicht, uns zu zeigen, was erstklassiger Service für dich bedeutet und was dich einzigartig macht.

03 Vorstellungsgespräch

Bereite dich gut auf diese Phase vor, indem du recherchierst, dich über unsere Anforderungen informierst und dich auf Fragen zu deiner Person und deinen Erfahrungen einstellst.

Zwei Menschen lächeln und umarmen sich im Freien